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Abstract
Within the mode-coupling theory for the evolution of structural relaxation,
the A4-glass-transition singularities are identified for systems of particles
interacting with a hard-sphere repulsion complemented by different short-
ranged potentials: Baxter’s singular potential regularized by a large-wavevector
cut-off, a model for the Asakura–Oosawa depletion attraction, a triangular
potential, a Yukawa attraction, and a square-well potential. The regular
potentials yield critical packing fractions, critical Debye–Waller factors, and
critical amplitudes very close to each other. The elastic moduli and the particle
localization lengths for corresponding states of the Yukawa system and the
square-well system may differ by up to 20 and 10%, respectively.

1. Introduction

In this paper, some results will be presented for the liquid–glass transition diagrams of simple
systems as obtained within mode-coupling theory (MCT) [1] for the evolution of structural
relaxation. This theory is based on closed non-linear equations of motion for the normalized
autocorrelation functions for density fluctuations with wavevector modulus q = |�q|, φq(t).
Liquid states are characterized by solutions vanishing for large times t , φq(t → ∞) = 0.
Glasses are characterized by solutions whose long-time limits are the non-vanishing Debye–
Waller factors of the arrested amorphous structure fq = φq(t → ∞), 0 < fq � 1. The fq

obey the set of implicit equations

fq

1 − fq
= Fq [ fk]. (1a)

The mode-coupling functional Fq reads

Fq [ fk] =
∑

�k+ �p=�q
V (�q, �k, �p) fk f p (1b)

with coupling coefficients

V (�q, �k, �p) = ρSq Sk Sp{[�kck + �pcp] · �q/q}2/(2q2). (2)
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Here, Sq and cq are the structure factor and the direct correlation function, respectively, related
by the Ornstein–Zernicke equation Sq = 1/[1 −ρcq]. The structure factor depends on control
parameters such as the particle density ρ, the temperature T , and parameters specifying the
dependence of the interaction potential U(r) on the interparticle distance r . Let us combine the
set of control parameters considered to a control-parameter vector V . The discussion will be
restricted to parameter regions where Sq , and hence Fq , depend smoothly on V . The Debye–
Waller factor fq for a given V is distinguished from other possible solutions of equations (1)
and (2), for the same V , say f̃q , by the maximum property: fq � f̃q for all q .

For almost all control parameters, the Debye–Waller factors fq depend smoothly on V .
The exceptional points are referred to as glass-transition singularities V c. These critical points
of equations (1) and (2) are bifurcation singularities of the cuspoid family Al , l = 2, 3, . . .. An
Al-bifurcation describes a topologically stable singularity that is equivalent to the bifurcation
singularities of the zeros of a real polynomial of degree l [2]. The liquid–glass transition
points are A2-singularities located on smooth surfaces in parameter space. If V crosses
this surface at some V c, the long-time limit φq(t → ∞) jumps from zero to the critical
Debye–Waller factor f c

q > 0. There may exist surfaces of A2-singularities within the glass.
These describe iso-structural transitions from one amorphous state characterized by fq > 0
to another state specified by a larger Debye–Waller factor f c

q > fq . For every A2-singularity,
a number λ, 0.5 � λ < 1, can be calculated. It is called the exponent parameter since it
determines the various anomalous exponents entering the description of the slow dynamics
for V near V c. The higher-order singularities, Al , l � 3, are the end-points of the transition
surfaces characterized by λ = 1. In the following, some properties of A4-singularities V ∗
will be discussed. Interparticle interactions will be considered, consisting of a hard-sphere
repulsion core of diameter d and a short-ranged attraction potential for r > d . The latter
will be parametrized by a typical attraction strength u0 and a typical attraction range �.
Therefore, a three-dimensional control-parameter space is considered: V = (ϕ, �, δ), where
ϕ = (π/6)ρd3 denotes the packing fraction of the spheres, � = u0/(kBT ) is a dimensionless
attraction strength or an inverse dimensionless temperature,and δ = �/d is an attraction-range
parameter.

For a system of particles interacting with a hard-sphere repulsion complemented by a
short-ranged attraction, MCT leads to two intriguing results [3, 4]. First, the increase of the
attraction strength � may cause a melting of the glass. This implies a re-entry phenomenon for
the transition diagram. For certain values of the packing fractionϕ, the liquid freezes into a glass
not only on cooling but also on heating. This prediction has been verified recently for colloidal
suspensions [5, 6]. In this work, the parameter � was varied by adding polymer to the solvent,
thereby increasing the strength of the depletion attraction. The re-entry phenomenon was also
established by molecular dynamics simulation studies [5, 7–9]. Second, the existence of an
A3-singularity was predicted. The glass–glass transitions connected with this higher-order
singularity deal with discontinuous changes of the localization mechanism from one caused
by the repulsion-induced cage effect to one caused by the attraction-induced bonding of the
particles. The cited work was based on Baxter’s model for sticky hard spheres (SHS) [10]
complemented with a large-cut-off wavevector qco restricting the wavevector sums in the
mode-coupling functional from equation (1b). The effective range of the regularized potential
introduced by the cut-off can be parametrized by � = π/qco. The singular Baxter interaction
leads to a large-q tail for the direct correlation function cq = O(1/q). It is this tail for
2π/d < q < qco that causes the A3-bifurcation. This A3-singularity disappears if qco is
decreased towards 2π/d .

The generic scenario for the disappearance of an A3-singularity in a three-parameter
system is the existence of an A4-glass-transition singularity at some point V ∗ = (ϕ∗, �∗, δ∗).
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Thus, the cited results [1–4] lead to the following conclusion. A system of particles interacting
with some steep strong repulsion core complemented by a sufficiently strong short-ranged
attraction potential exhibits an A4-singularity at some control-parameter point V ∗. The
general transition diagram is organized around this V ∗. Diagrams for different models for the
interparticle interaction can be mapped onto each other for small V −V ∗ by a smooth invertible
parameter transformation. In this sense, the bifurcation scenario is universal. The scenario at
an A4-singularity has been shown in some detail for the square-well system (SWS) [11]. In
the following, these results will be extended and compared with the ones calculated for other
potentials that might be of interest for the description of colloidal systems.

2. Results

Let us specify the attraction potentials to be considered and the approximation theories to be
used to evaluate Sq . The model of SHS complemented by the above-mentioned cut-off qco will
be used with the convention � = 15/τ . For the definition of the stickiness parameter τ and
the evaluation of the structure factor, we follow Baxter’s work [10]. The hard-core Yukawa
system (HCY) is used with the following convention for the control parameters:

U(r)/(kBT ) = −� exp[−(r − d)/(δd)]/(r/d), d < r, (3)

i.e., δ is chosen as the inverse of the conventional screening parameter b. The structure factor is
evaluated analytically in the mean-spherical approximation [12]. Furthermore, three potentials
of polynomial shape are considered:

U(r)/(kBT ) = −�[(d + δd − r)/(δd)](n−1), d < r < (1 + δ)d. (4)

For n = 1, the formula describes the SWS. The triangular-potential model (TRI) is obtained
for n = 2. The Asakura–Oosawa system (AOS) is modelled by n = 3. The latter potential is
obtained as the small-δ limit for the depletion attraction acting between spheres in a dilute
solvent of small polymers [13]. It was shown that the equations for the mean-spherical
approximation for Sq of the SWS can be solved analytically by an expansion in δ [11]. This
procedure can be extended to treat the potentials of equation (4) for every n. The leading-
order expansion formulae are given in the appendix, and they are used in the following. Let
us recall that for the range of length parameters of interest, say δ < 0.20 for the SWS, the
next-to-leading-order result is very close to the full numerical solution for n = 1 [11].

To determine fq for a given V , the standard iteration procedure is applied: f (n)
q /(1− f (n)

q )

= Fq [ f (n−1)

k ], n = 1, 2, . . ., f (0)
q = 1, limn→∞ f (n)

q = fq [1]. This is done after equations (1)
and (2) have been rewritten so that the wavevector moduli are discretized to M points on a grid
of equal spacing h. The values h = 0.4/d and M = 300 have been used to identify the A2-
singularities on the bifurcation surface. It is onerous to identify the higher-order singularities,
since (l − 1) control parameters have to be scanned and the convergence of the iteration is
slower for points at an Al+1-singularity than at an Al-singularity. One can use the deviation
of λ from unity to characterize the error for the identification of an Al with l � 3. In our
calculations we achieved 1 − λ < 10−3. At the end, the calculation at V ∗ was repeated
with h = 0.08/d and M = 1500 in order to check the independence of the results of the
discretization approximation.

As a representative example, figure 1 exhibits the glass-transition-singularity diagram of
the HCY. The inner points of the lines are A2-singularities obtained as constant-δ cuts through
the bifurcation manifold in the three-dimensional space of control parameters V . There are
three topologically different cuts. The smooth curve shown for δ = 0.0250 represents a
typical cut for δ > δ∗. All points describe liquid–glass transitions characterized by an exponent
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Figure 1. The transition diagram for the HCY. The attraction strength � versus packing fraction
ϕ curves show cuts through the surfaces of glass-transition singularities for fixed attraction-
range parameter δ as indicated; cf equation (3). The curve for δ = δ∗ = 0.0173 hits
the A4-singularity (∗). The line for δ = 0.0100 exhibits a crossing point (�), and an A3-
singularity (◦). Four further A3-singularities are marked by circles; they refer from left to
right to δ = 0.0167, 0.0143, 0.0125, 0.0111. The arrow points to the critical packing fraction
ϕc

HSS = 0.516 for the HSS.

parameter λ < 1. For δ = δ∗ = 0.0173 . . ., the transition curve runs through the A4-singularity
marked by a star. For all V �= V ∗, the curve is smooth and λ < 1. For V = V ∗, λ = 1
and the curve has a continuous tangent but an infinite curvature. The curves for δ < δ∗ each
consist of two pieces as demonstrated for δ = 0.0100. The part shown as a heavy curve with
d�c/dϕc < 0 terminates within the glass in an A3-singularity marked by a circle. The second
part shown as a light curve terminates in a crossing point indicated by a square. The curve
of A2-singularities between the crossing point and the A3-singularity deals with glass–glass
transitions and the other part with liquid–glass transitions. A2-glass-transition curves for the
HCY for δ �= δ∗ cuts have been considered previously for the HCY [4, 14, 15].

Let us add a remark on the diagram. Obviously, for � = 0, all cuts start at the critical
packing fraction of the hard-sphere system (HSS), ϕc

HSS = 0.516. There is a characteristic
range parameter δre−entry: the slope d�c/dϕc for � = 0 is negative for δ > δre−entry and positive
for δ < δre−entry. The latter case is exemplified in figure 1 by the three cuts discussed in the
preceding paragraph; the former case is shown by the cut for δ = 0.300. For δ < δre−entry

and sufficiently small �, the transition curves deal with melting of the glass upon increasing
the attraction parameter �. Hence, for all liquid states with ϕ > ϕc

HSS, one gets the re-entry
phenomenon mentioned in the introduction. The bonding forces create holes in the cages
and this can destroy the particle localization for long times. In agreement with Lindemann’s
melting criterion, the critical localization length of the HSS is about r c

s = 0.0746d . If the
attraction potential range � is much larger than r c

s , i.e., if δ exceeds a critical value δre−entry,
the bonding effects cannot change the cage structure. Therefore, the re-entry mechanism
disappears for δ > δre−entry. In this case, the transition curve is similar to the one obtained
for a typical van der Waals system described, e.g., by a Lennard-Jones potential. One obtains
δre−entry = 0.30 and 0.117 for the HCY and SWS, respectively. It should be noted that the
transition curve shown for δ = 0.30 terminates at the spinodal line defined by the divergence of
Sq for q = 0. Beyond this point, MCT equations are meaningless and calculations of density
correlators cannot be performed there within that theory.
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Figure 2. Attractive potentials U relative to the thermal energy kB T as a function of the interparticle
distance r relative to the hard-sphere diameter d for control parameters V ∗ at the respective A4-
singularity. The curves refer to the SWS (——), TRI (· · · · · ·), AOS (— · —), HCY (– – –),
and SHS (— · · —). The inset shows the cuts of the bifurcation surfaces through V ∗ for fixed
attraction-range parameter δ = δ∗.

Figure 2 exhibits the four regular attraction potentials defined in equations (3) and (4) for
control parameters at the respective A4-singularities. The inset shows cuts through the liquid–
glass transition surfaces for fixed range parameter δ∗. The regular potentials are rather close
to each other for 1.01 � r/d � 1.05. The volume of the shell 1.00 < r/d < 1.02 is smaller
than that for the shell 1.02 < r/d < 1.04. Within the latter, the attraction strength decreases
in the sequence SWS, TRI, AOS, HCY. Therefore, the critical packing fraction ϕ∗ for the
onset of an iso-structural glass transition increases in this sequence. One finds ϕ∗ = 0.5272,
0.5307, 0.5321, and 0.5342, respectively. For the same reason, the maximum packing fraction
of the liquid increases in this sequence. One gets ϕmax = 0.5293, 0.5326, 0.5340, and 0.5367,
respectively. For Baxter’s model, all mode-coupling effects have been cut off for q > πd/δ∗.
Therefore, the bonding effects are reduced compared to those for the regular potentials, and the
values ϕ∗ = 0.5562 and ϕmax = 0.5566 for the SHS are larger than the corresponding values
for the regular potentials. Evaluating the structure factor of the SWS up to next-to-leading
order as done in [11], one gets ϕ∗ = 0.5277 and ϕmax = 0.5299. Indeed, the difference of
these numbers from those calculated with the formulae from the appendix is small.

Structure factors Sq at the A4-singularities and the corresponding critical Debye–Waller
factors f c

q are compared in figure 3. Also compared are the so-called critical amplitudes
hq . These are evaluated by a straightforward but involved procedure from the mode-coupling
functional at the bifurcation point [1]. They quantify the susceptibility of the arrested structure.
The increase of ( fq − f c

q ) upon increasing V −V ∗ is proportional to hq and so is the prefactor
in the logarithmic decay laws that are the characteristic feature of the dynamics near a higher-
order singularity [16]. The Sq for various models mainly differ by a small shift parallel to
the q-axis only. This shift reflects the decrease of the interparticle distance caused by the
increase of ϕ∗. The f c

q oscillate in phase with Sq and the hq oscillate in opposite phase, as
known and explained for the simple HSS [1]. However, the f c

q are considerably larger and
the hq are smaller than the corresponding quantities at the hard-sphere transition. This is a
manifestation of the fact that the attractive part of the potential enforces localization, provided
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Figure 3. The structure factor Sq , critical Debye–Waller factor f c
q , and critical amplitude

hq for control parameters specifying the A4-singularity V ∗, SWS (——), HCY (– – –), and
SHS (— · · —). The fourth curve (− − · − −·) shows the results for the SWS using the structure
factor up to next-to-leading order in δ [11]. The curves denoted by the HSS exhibit f c

q and hq for
the critical point of the HSS. The inset from the lower panel shows the variation of the exponent
parameter λ along the liquid–glass transition curves through V ∗ from figure 2.

that a glass state is established. Within the wavevector region around the first diffraction peak,
say 1 � qd � 10, the Debye–Waller factor of the SWS differs from that of the HCY up to
about 7% while this difference is minimal at the peak. The corresponding difference for the
critical amplitude is about 9% which is maximal at the peak. The inset for the lowest panel
of figure 3 displays the variation of the exponent parameter λ for the liquid–glass transitions
on the cuts δ = δ∗. Rescaled as a function of �/�∗, the λ cannot be distinguished on the
branch �/�∗ < 1 dealing with transitions to the repulsion-dominated glass. On the branch
�/�∗ > 1, which deals with transitions to the attraction-dominated glass, the λ for the various
models are still very close to each other.

Figure 3 also exhibits results for the SWS evaluated with the structure factor in next-to-
leading order of [11] in comparison with those based on the leading-order theory explained in
appendix. Obviously the difference is too small to be of interest.

The macroscopic mechanical stiffness of liquids and glasses is quantified by the elastic
moduli. The longitudinal modulus ML specifies the stiffness for compressions and the
transverse one MT, also called shear modulus G ′, the stiffness for shear deformations.
They are defined as constants of proportionality in the linearized stress–strain relation. In
systems with Newtonian microscopic dynamics, they determine the speed of longitudinal and
transverse sound, respectively, via vL,T = √

ML,T/(ρm) with ρm denoting the mass density.
For an ergodic system, the shear modulus vanishes, M0

T = 0. The longitudinal modulus
reads M0

L = ρ(kBT )S−1
0 with S0 = limq→0 Sq . In the glass state, the moduli are larger:

ML,T = M0
L,T + δML,T. The additional contributions are the positive long-time limits of
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Figure 4. Longitudinal elastic moduli ML and transverse elastic moduli MT for the δ = δ∗
transition curve of the SWS (HCY) shown as full (dashed) curves. For the SWS, the structure
factor from [11] was used. In the limiting case of the HSS, M0

L = 74.1, δMT = 18.1, δML = 56.1.
At the A4-singularity for the SWS (HCY), δM∗

T = 54.3 (64.4), δM∗
L = 163.4 (193.6). At the

maximum δMT = 164.2 (205.3), δML = 493.0 (616.3).

fluctuating-force correlators. For the latter, MCT yields [1]

δML,T = ρ(kBT ) lim
q→0

∑
�k+ �p=�q

Sk Sp fk f p{[�kck + �pcp] · �eL,T
�q }2(ρ/2q2). (5)

Here �eL,T
�q are unit vectors parallel and perpendicular to �q, respectively. The limit leads to

δML,T = ρ(kBT )

∫ ∞

0
dk {ρ[Sk fkk/(2π)]2wL,T(k)}, (6a)

wL(k) = c2
k + 2

3 (kc′
k)ck + 1

5 (kc′
k)

2, (6b)

wT(k) = 1
15 (kc′

k)
2. (6c)

In figure 4 the moduli for the SWS are compared with those for the HCY. The states
are chosen on the cuts δ = δ∗ through the respective transition surface. The compression
modulus M0 of the liquid varies smoothly throughout, reflecting the well known increase of
the compressibility with increasing attraction forces. The large variations of δML,T reflect the
strong effect of bonding potentials on restoring forces [4, 11]. The same bonds are resisting
shear as well as compression deformations. Therefore, there is no great difference in behaviour
between the two moduli. The contributions to δML due to the first two terms in equation (6b)
are smaller than the one due to the last term. Further, incidentally, these two contributions
nearly cancel. Therefore, δMc

L differs from 3 δMc
T by less than 3% for � < �∗ and less than

0.5% for � � �∗. The universal properties of the A4-bifurcation imply the following: the
moduli vary smoothly for all � �= �∗ and at the A4-singularity there is a cubic-root singularity:
M(�) − M(�∗) ∝ (� − �∗)1/3. The singular increase of M with � increasing through �∗ is
a precursor of the discontinuous increase of M upon crossing the glass–glass transition line
for δ < δ∗. If � increases further, the moduli have to decrease since the density decreases
towards zero. Therefore, the moduli exhibit a maximum at some value of � exceeding �∗. By
continuity, such maximum also occurs for cuts with δ close but not equal to δ∗, as was noticed
before for the shear modulus [4, 17].

The clearest quantity for demonstrating the change of the glassification mechanism upon
increasing the attraction is the variation of the particle’s localization length rs as a function
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s of a tagged particle for states on the δ = δ∗ transition

curve for the SWS (HCY) shown as full (dashed) curve. At the A4-singularity one gets
rc

s /d = 0.0425 (0.0390) as indicated by the arrows. The line labelled HSS marks the localization
length rc

s /d = 0.0746 for the HSS.

of � for states on the cut δ = δ∗ (figure 5). This length is given by the mean-squared radius
of a particle’s long-time probability density. The Fourier transform of the latter is the Lamb–
Mößbauer factor f s

q that is evaluated from an equation similar to equation (1) [1]. One ends
up with an equation for the inverse of r2

s analogous to the equations for the moduli:

1/r2
s = 1

6

∫ ∞

0
dk {ρSk fk f s

k [ckk2/π]2}. (7)

With increasing �, r c
s decreases monotonically from the value for the HSS, r c

s /d = 0.0746.
The variation is smooth except for the cubic-root singularity at � = �∗. For strong bonding,
r c

s decreases to a �-insensitive value of the order of the attraction potential range, as noted
before for δ > δ∗ in the HCY [4].

3. Discussion

The first peculiarity of structural relaxation in systems of particles interacting with hard-
sphere-like repulsions complemented by the short-ranged attractions predicted by MCT [3, 4],
namely the re-entry phenomenon for the liquid–glass transition diagram, has been established
recently [5–9]. This justifies focusing now on the more difficult task of testing the second
prediction concerning the existence of A3- and A4-singularities. The signature of such higher-
order singularities is the extreme stretching of relaxation curves, as has been explained on
the basis of asymptotic expansions in terms of powers of logarithms in time [16]. The recent
simulation results [7, 9] provide hints that there are such logarithmic decay laws. However, a
more detailed analysis of the data would be required if one intended to arrive at compelling
conclusions. The transition diagram exhibiting A3-singularities is organized around an A4-
singularity. So far, such a singularity has been identified within a microscopic theory only for
the SWS [11]. For this system, all parameters and amplitudes necessary for a discussion of the
logarithmic decay laws have been evaluated [18]. In the present paper, A4-singularities have
been identified and characterized for a series of other attraction potentials in order to provide
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some information on the sensitivity of the MCT results to the microscopic details assumed for
the interaction.

The critical packing fractionsϕ∗ found for the A4-singularities of the four regular potentials
considered (figure 2) or the related largest values for the liquid packing ϕmax exceed the
critical packing fraction ϕc

HSS of the HSS by about 3%. But the difference between these
values for different models is about 1.4% only. It is not clear whether or not experiments can
discriminate between the ϕ∗ or ϕmax predicted for, say, the SWS and HCY. But simulation
studies for the diffusivity of the kind published recently [8, 9] should be able to test our
prediction ϕmax

HCY > ϕmax
SWS.

The singular potential for SHS was introduced by Baxter [10] as a certain attraction-range-
to-zero limit in order to simplify equations from a mathematical point of view. But, within
MCT, these simplifications cannot be made use of since the limit to zero for the range parameter
δ must not be permuted with the limit to infinity for the wavevectors in the mode-coupling
integrals. The problem can be handled by introducing some wavevector cut-off [3, 4]. This is
equivalent to introducing a regular potential leading to a considerably larger ϕ∗ − ϕc

HSS than
found for the other potentials examined above.

It is well known that the structure factor theories used in this paper lead to unsatisfactory
results for the thermodynamic functions. Great progress has been made to improve on this, as
is discussed, e.g., in [14]. The thermodynamic functions are derived from the zero-wavevector
limits of correlators. However, in contrast to the limit of large wavevectors, which is important
for capturing the essential physics of the glass transition, small-q effects play a minor role
for the transition curves. As already demonstrated for the SWS in [11], artificially setting the
structure factor input to zero for qd < 4 does not alter the transitions qualitatively. For � � �∗
where large-q values dominate, transition lines are in accordance even quantitatively.

The differences among the structure factors of the various models for wavevectors
accessible in scattering experiments for colloids, say 2 � qd � 15, are very small if the states
at the A4-singularity are compared (figure 3). However, the differences between the Debye–
Waller factors and the critical amplitudes are of the order of 5%. The f c

q and hq determine the
amplitudes of the leading-order formulae for the intermediate-scattering functions for states
near an A4-singularity in a similar manner to how they determine the corresponding results near
an liquid–glass A2-transition [16]. If they could be deduced from a data analysis with similar
accuracy to what one can achieve for data near an A2-singularity, one could discriminate, e.g.,
between the square-well model and the HCY.

The tagged particle localization is described by the Lamb–Mößbauer factor, f s
q , that can

be measured by means of incoherent scattering. It is a bell-shaped function of q and its width
can be quantified by the localization length rs: f s

q = 1 − (qrs)
2 + O(q4). As expected from

the shape of the attractive potentials at the A4-singularity (figure 2), r∗
s is smaller for the HCY

than for the SWS by 10%. The MCT brings it out that r c
s becomes insensitive to � for strong

attraction. For the SWS (HCY) one gets r c
s /d = 0.022 (0.020) for �/�∗ > 1.8 within 1%

accuracy.
The largest difference between the SWS and HCY is found at the maximum of the elastic

moduli where the HCY is about 20% stiffer than the SWS. Taking the critical moduli of the
HSS as reference, the maxima of the SWS and HCY should be at 9 or 11 times that value,
respectively, as shown in figure 4.

The line of glass–glass transitions occurring for the cuts through the bifurcation surface
for δ < δ∗ has an analogue in the line of iso-structural phase transitions from one face-centred
cubic crystal to another one with a different lattice constant, identified for systems similar to
the ones discussed above [19–22]. Similar to what is shown in figure 1, the end-point of the
phase-transition line for the HCY also exhibits a critical attraction constant �c that increases
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with decreasing range parameter δ. However, the value �c for phase transitions of the SWS was
found to be practically independent of δ [20]. In contrast to this finding for the crystal–crystal
transition, the end-point of the glass–glass transition line of the SWS behaves quite similarly
to that found for the HCY.

Summarizing, one can conclude that the MCT predictions for the dynamics near an A4-
singularity are rather robust. At the present state of discussion, one can use any of the models
studied so far to predict data semiquantitatively. There are two reservations. First, the quality
of the theories applied for the evaluation of the structure factors Sq is not known for the
high-density regime of interest. The Sq are, however, the essential input functions for all
quantitative considerations. Second, the range of validity of the basic MCT equations of
motion are not understood—not even qualitatively. Quantitative results of MCT have been
tested with encouraging outcomes for the HSS [23], binary Lennard-Jones systems [24], and
silica [25]. It remains to be tested by experiment or computer simulation whether or not the
theory can also describe the systems studied in this paper.
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Appendix A. Structure factors

For the calculation of the structure factors we use a scheme developed earlier for the SWS [11].
The short-ranged attraction of the potential from equation (4) added to the hard core is treated
in the mean-spherical approximation and the resulting equations are expanded in the small
parameter δ. The structure factor is expressed in terms of Baxter’s factor function Q(r) [26]:

S−1
q = Q̂(q)Q̂(q)∗, (A.1)

Q̂(q) = 1 − 2πρ

∫ ∞

0
dr exp[iqr ]Q(r). (A.2)

In the leading-order approximation,one gets a shifted parabola within the hard core,0 � r � 1:

Q(r) = a

2
(r2 − 1) + b(r − 1) +

K

n
, (A.3)

and a polynomial within the attraction shell, 1 � r � 1 + δ:

Q(r) = K

n

(
1 + δ − r

δ

)n

, 1 � r � 1 + δ. (A.4)

Here, the hard-core diameter d is used as the unit of length. For r > 1 + δ, the factor function
is zero. The various constants are given in concise forms, using K = �δ, as

a = 1 + 2ϕ

(1 − ϕ)2
− 12ϕ

(1 − ϕ)

K

n
, b = −3ϕ

2(1 − ϕ)2
+

6ϕ

(1 − ϕ)

K

n
. (A.5)

Taking the limit δ → 0 can be carried out in equations (A.3)–(A.5) in the sense of [10]. This
yields the result for Sq used in [3, 4]. However, this procedure appears unjustified. Within the
mode-coupling functional, equation (1b), one needs values of Sq also for large wavevectors.
But the limits q → ∞ and δ → 0 cannot be permuted. Introduction of the cut-off is one way
to redefine the model so that the MCT remains meaningful. A more appealing procedure is
to consider the δ-expansion from [11] and define as Baxter limit the one where terms of order
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δ1 are neglected compared to those of order δ0. But this is just the approximation defined
by equations (A.3)–(A.5) that was used in this paper. It is in no respect more complicated to
handle than the approximation proposed originally [10].
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